Getting Started with Pandas
pd.Series(data, index=None, dtype=None, name=None)
pd.DataFrame(data, index=None, columns=None, dtype=None, copy=False)
df = pd.DataFrame({ 'Name': ['Rohit', 'Shreya', 'Aman'], 'Age': [21, 24, 27], 'City': ['Mumbai', 'Delhi', 'Lucknow'] })
Pandas makes it easy to load data from various file formats. Let's explore how to load data from CSV, Excel, and JSON files.
import pandas as pd # Loading data from a CSV file df = pd.read_csv('Copy the path of your csv file here(ex-path.csv)')
import pandas as pd # Loading data from an Excel file df = pd.read_excel('Copy the path of your excel file here(ex-abc.xlsx)')
import pandas as pd # Loading data from a JSON file df = pd.read_json('Copy the path of your json file here(ex-abc.json)')
Pandas allows you to easily export your DataFrame to various file formats. Here is how you can export data to CSV, Excel, and JSON files.
import pandas as pd # Exporting DataFrame to a CSV file df.to_csv('output.csv', index=False)
import pandas as pd # Exporting DataFrame to an Excel file df.to_excel('output.xlsx', index=False)
import pandas as pd # Exporting DataFrame to a JSON file df.to_json('output.json', orient='records')
As you can see to export data from a Pandas DataFrame to different file formats like CSV, Excel, and JSON, you can use the to_csv(), to_excel(), and to_json() methods, respectively.